Fuzzy-Neuro Model for Intelligent Credit Risk Management

نویسندگان

  • Elmer P. Dadios
  • James Solis
چکیده

This paper presents hybrid fuzzy logic and neural network algorithm to solve credit risk management problem. Credit risk is the risk of loss due to a debtor’s non-payment of a loan or other line of credit. A method of evaluating the credit worthiness of a customer is complex and non-linear due to the diverse combinations of risk involve. To address this problem a credit scoring method is proposed in this paper using hybrid fuzzy logic-neural network (HFNN) model. The model will be implemented, tested, and validated for individual auto loans using real life bank data. The neural network is used as the learner and the fuzzy logic is used as the implementer. The neural network will fine tune the fuzzy sets, remove redundant input variables, and extract fuzzy rules. The extracted fuzzy rules are evaluated to retain the best k number of rules that will give final and intelligent decisions. The experiment results show that the performance of the proposed HFNN model is very accurate, robust, and reliable. Comparison of these results to other previous published works is also presented in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring

Credit risk analysis is an active research area in financial risk management and credit scoring is one of the key analytical techniques in credit risk evaluation. In this study, a novel intelligent-agent-based fuzzy group decision making (GDM) model is proposed as an effective multicriteria decision analysis (MCDA) tool for credit risk evaluation. In this proposed model, some artificial intelli...

متن کامل

A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis

Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...

متن کامل

A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis

Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...

متن کامل

Design and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit

Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...

متن کامل

Design and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit

Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013